Cotton Cultivar Trials for 2016 Central and South Texas

Steve Hague, Wayne Smith, Dawn Deno, Conner Cross
Texas A&M AgriLife Research-Department of Soil and Crop Sciences
TABLE OF CONTENTS

Introduction – Agronomic and Fiber Quality Determinations .. Page 3
Acknowledgments .. Page 5

Table 1 Locations, soil types, and irrigated/dryland sites .. Page 6
Table 2 Agronomic performance and fiber quality of cotton cultivars evaluated at Weslaco under irrigated culture ... Page 7
Table 3 Agronomic performance and fiber quality of cotton cultivars evaluated at Corpus Christi under dryland culture ... Page 9
Table 4 Agronomic performance and fiber quality of cotton cultivars evaluated at College Station under irrigated culture .. Page 11
Table 5 Agronomic performance and fiber quality of cotton cultivars evaluated at College Station under dryland culture ... Page 13
Table 6 Agronomic performance and fiber quality of cotton cultivars evaluated at Thrall under dryland culture ... Page 15
Table 7 Agronomic performance and fiber quality of cotton cultivars evaluated at Commerce under dryland culture ... Page 17
Table 8 Agronomic performance and fiber quality of cotton cultivars evaluated at Chillicothe under irrigated culture ... Page 18
Introduction

Official Cultivar Trials (OCT) in cotton are conducted each year by Texas A&M AgriLife Research to determine the relative performance of varieties available to producers in Texas. These tests are conducted statewide to evaluate commercial cultivars in every cotton growing region. Since Texas is a large state with diverse climates and growing seasons, the OVT results are reported separately for Central and South Texas, and the Rolling and High Plains. This report concentrates on the cotton production regions of Central and South Texas.

Yield and other characteristics were analyzed as randomized complete block designs. Least significant differences (LSD) are used to determine if two cultivars are different at k=100, which approximates the 5% probability level. Values reported for any two cultivars at each location that differ by more than the LSD value are expected to be different in 95 of every 100 comparisons. The test average (mean) and the coefficient of variation (CV) also are reported for each characteristic measured at each location. The coefficient of variation is a measure of the uniformity of the test site (e.g. soil uniformity, drainage, disease, etc.). Lower coefficients of variation are desirable.

Agronomic Determinations

Lint yield: Lint yield per acre is determined as \((\text{lbs. seed cotton/plot}) \times (\text{appropriate gin turnout}) \times (\text{area conversion factor})\).

Gin turnout: Amount of lint in a random sample of machine harvested seed cotton expressed as a percent of seed cotton in the sample.

Fiber Quality Determinations

Fiber quality parameters were determined by high volume instrument (HVI) testing at the Texas Tech University Fiber and Biopolymer Research Institute at Lubbock, TX.

Fiber Fineness: Fiber fineness, micronaire, is a measure of the maturity and/or the fineness of cotton fibers and is reported in micronaire units. Micronaire is a relative measure of the development, or maturity, of the secondary wall of the cotton fiber throughout its entire length. Processing rates, fabric dyeing, and yarn and fabric appearance are adversely affected by immature fibers. Fine fibers, although mature, weigh less per unit length and may require reduced processing speeds compared to thicker fibers, yet these finer fibers may produce stronger yarns. Thick or coarse fibers result in fewer fibers in a cross section of yarn, and therefore, may produce weaker yarns.

Fiber fineness is determined by forcing air through a specified weight of lint. The rate of air flow is related to fiber thickness. Finer fibers result in more fibers per specified weight and, therefore, have greater resistance to air flow. Micronaire values of 3.4 or below indicate fine and perhaps immature fibers and values of 5.0 or higher
indicate coarse fibers. Values of 3.5 to 4.9 are desirable and indicate mature, well-developed fibers.

Fiber Length: Fiber length is reported in hundredths of an inch as measured by High Volume instrument and is the average of the longest 50 percent of the fibers in the sample, usually referred to as the upper half mean (UHM). Long fibers are desirable because they produce greater yarn strength, aid in spinning finer yarns, and can be processed at higher speeds.

<table>
<thead>
<tr>
<th>HVI fiber lengths (in.) and descriptive designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 0.97</td>
</tr>
<tr>
<td>0.97 - 1.10</td>
</tr>
<tr>
<td>1.11 - 1.28</td>
</tr>
<tr>
<td>1.29 – 1.36</td>
</tr>
<tr>
<td>1.37 and above</td>
</tr>
</tbody>
</table>

Fiber Uniformity: Fiber uniformity index (UI) provides a relative measure of the length uniformity of cotton fibers. Uniformity is calculated as the ratio of the average length of all fibers to the average length of the longest 50 percent of the fibers in the sample. High uniformity values indicate uniform fiber length distribution and are associated with a high-quality product and with low manufacturing waste.

<table>
<thead>
<tr>
<th>Uniformity ratios and descriptive designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 77</td>
</tr>
<tr>
<td>77-79</td>
</tr>
<tr>
<td>80-82</td>
</tr>
<tr>
<td>83-85</td>
</tr>
<tr>
<td>Above 85</td>
</tr>
</tbody>
</table>

Fiber Strength: Yarn strength and ease of processing are positively correlated with strong fibers. Strength values are reported in grams of force required to break a bundle of cotton fibers with the holding jaws separated by 1/8 inch. The size of the bundle of fibers is described in tex units. Fiber strength is described from very low to very high within UHM classifications.

<table>
<thead>
<tr>
<th>HVI 1/8-inch gauge strength (g/tex) and fiber length group and descriptive designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short (0.96 inch or less)</td>
</tr>
<tr>
<td>18-19</td>
</tr>
<tr>
<td>20-21</td>
</tr>
</tbody>
</table>
Fiber Elongation: Elongation is the degree of extension of the fibers before break occurs when measuring strength. Fiber bundle elongation is correlated with yarn elongation but has an insignificant effect on yarn strength. Its value and importance in yarn manufacture has not been fully established.

<table>
<thead>
<tr>
<th>Fiber Elongation and descriptive designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9 and below</td>
</tr>
<tr>
<td>5.0-5.8</td>
</tr>
<tr>
<td>5.9-6.7</td>
</tr>
<tr>
<td>6.8-7.6</td>
</tr>
<tr>
<td>7.7 and above</td>
</tr>
</tbody>
</table>

Work to break: An estimate of the amount of work required to completely break the bundle of fibers during HVI determination of fiber bundle strength. Work to break is estimated by multiplying HVI fiber bundle strength by elongation. This value provides an additional estimate of the yarn performance derived from each variety.

Acknowledgments

The authors wish to recognize the contributions of personnel at the Texas A&M AgriLife Research and Extension Centers, graduate students and undergraduate students who contributed to the conduct of these cultivar evaluations.
Table 1. 2016 Cotton Cultivar Tests and Preliminary Cultivar Tests locations, soil types, and irrigated/dryland.

<table>
<thead>
<tr>
<th>Location</th>
<th>Soil Type</th>
<th>Irrigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weslaco</td>
<td>Hildago s.c.l.(^1)</td>
<td>yes</td>
</tr>
<tr>
<td>Weslaco</td>
<td>Hildago s.c.l.(^1)</td>
<td>no</td>
</tr>
<tr>
<td>Corpus Christi</td>
<td>Victoria clay</td>
<td>no</td>
</tr>
<tr>
<td>San Patricio Co.</td>
<td>Victoria clay</td>
<td>no</td>
</tr>
<tr>
<td>College Station</td>
<td>Westwood s.l.(^2)</td>
<td>yes</td>
</tr>
<tr>
<td>College Station</td>
<td>Westwood s.l.(^2)</td>
<td>no</td>
</tr>
<tr>
<td>Thrall</td>
<td>Burleson clay</td>
<td>no</td>
</tr>
<tr>
<td>Commerce</td>
<td>Houston c.l.(^3)</td>
<td>no</td>
</tr>
<tr>
<td>Chillicothe</td>
<td>Abilene c.l.(^3)</td>
<td>yes</td>
</tr>
</tbody>
</table>

1. s.c.l.=sandy clay loam
2. s.l.=silt loam
3. c.l.=clay loam
Table 2. Agronomic performance and fiber quality of cotton cultivars evaluated at Weslaco, 2016 (irrigated).

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Lint Yield (lb/ac)</th>
<th>Gin Turnout (%)</th>
<th>Micronaire (units)</th>
<th>Length (in)</th>
<th>Strength (g/tex)</th>
<th>UIP (ratio)</th>
<th>Elongation (%)</th>
<th>Work to Break</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP 1646 B2XF</td>
<td>2012</td>
<td>44.3</td>
<td>4.5</td>
<td>1.31</td>
<td>31.0</td>
<td>85.1</td>
<td>5.9</td>
<td>181</td>
</tr>
<tr>
<td>PHY 496 W3RF</td>
<td>1988</td>
<td>44.3</td>
<td>4.4</td>
<td>1.18</td>
<td>35.6</td>
<td>85.3</td>
<td>6.0</td>
<td>211</td>
</tr>
<tr>
<td>PHY 499 WRF</td>
<td>1963</td>
<td>43.0</td>
<td>5.1</td>
<td>1.20</td>
<td>36.7</td>
<td>85.4</td>
<td>6.4</td>
<td>233</td>
</tr>
<tr>
<td>Croplan 3787 B2RF</td>
<td>1955</td>
<td>43.3</td>
<td>4.8</td>
<td>1.21</td>
<td>33.8</td>
<td>85.4</td>
<td>6.2</td>
<td>210</td>
</tr>
<tr>
<td>NG 3406 B2XF</td>
<td>1946</td>
<td>38.9</td>
<td>4.3</td>
<td>1.19</td>
<td>31.6</td>
<td>84.8</td>
<td>7.2</td>
<td>228</td>
</tr>
<tr>
<td>PHY 495 W3RF</td>
<td>1946</td>
<td>43.0</td>
<td>4.7</td>
<td>1.16</td>
<td>36.9</td>
<td>85.0</td>
<td>6.1</td>
<td>224</td>
</tr>
<tr>
<td>ST4946 GLB2</td>
<td>1945</td>
<td>39.1</td>
<td>4.8</td>
<td>1.19</td>
<td>34.3</td>
<td>84.1</td>
<td>6.5</td>
<td>223</td>
</tr>
<tr>
<td>NG 5007 B2XF</td>
<td>1943</td>
<td>42.8</td>
<td>4.4</td>
<td>1.22</td>
<td>30.3</td>
<td>84.5</td>
<td>7.0</td>
<td>210</td>
</tr>
<tr>
<td>DP 1614 B2XF</td>
<td>1932</td>
<td>44.8</td>
<td>5.0</td>
<td>1.21</td>
<td>33.4</td>
<td>84.7</td>
<td>7.0</td>
<td>233</td>
</tr>
<tr>
<td>DP 1555 B2RF</td>
<td>1852</td>
<td>42.3</td>
<td>4.3</td>
<td>1.23</td>
<td>34.2</td>
<td>84.0</td>
<td>6.2</td>
<td>212</td>
</tr>
<tr>
<td>DP 0912 B2RF</td>
<td>1848</td>
<td>39.3</td>
<td>5.3</td>
<td>1.15</td>
<td>32.3</td>
<td>84.3</td>
<td>5.8</td>
<td>188</td>
</tr>
<tr>
<td>TAM 13 S-03</td>
<td>1844</td>
<td>38.3</td>
<td>4.7</td>
<td>1.22</td>
<td>33.4</td>
<td>85.6</td>
<td>6.2</td>
<td>205</td>
</tr>
<tr>
<td>NG 1511 B2RF</td>
<td>1837</td>
<td>41.2</td>
<td>4.6</td>
<td>1.17</td>
<td>33.3</td>
<td>84.8</td>
<td>7.0</td>
<td>233</td>
</tr>
<tr>
<td>DG 3526 B2XF</td>
<td>1814</td>
<td>44.3</td>
<td>4.4</td>
<td>1.19</td>
<td>32.8</td>
<td>84.8</td>
<td>7.4</td>
<td>240</td>
</tr>
<tr>
<td>DP 1553 B2XF</td>
<td>1801</td>
<td>43.5</td>
<td>4.6</td>
<td>1.22</td>
<td>31.4</td>
<td>84.5</td>
<td>6.7</td>
<td>210</td>
</tr>
<tr>
<td>CA-26</td>
<td>1789</td>
<td>37.2</td>
<td>4.5</td>
<td>1.19</td>
<td>34.4</td>
<td>83.9</td>
<td>6.1</td>
<td>208</td>
</tr>
<tr>
<td>Tamcot G11</td>
<td>1777</td>
<td>37.1</td>
<td>4.1</td>
<td>1.35</td>
<td>32.2</td>
<td>85.8</td>
<td>4.8</td>
<td>153</td>
</tr>
<tr>
<td>DP 1044 B2RF</td>
<td>1767</td>
<td>39.3</td>
<td>4.4</td>
<td>1.16</td>
<td>33.8</td>
<td>83.8</td>
<td>7.9</td>
<td>265</td>
</tr>
<tr>
<td>DP 1518 B2XF</td>
<td>1765</td>
<td>40.2</td>
<td>4.1</td>
<td>1.23</td>
<td>32.3</td>
<td>84.1</td>
<td>4.8</td>
<td>155</td>
</tr>
<tr>
<td>All-Tex Nitro 44</td>
<td>1742</td>
<td>38.2</td>
<td>3.9</td>
<td>1.30</td>
<td>36.2</td>
<td>85.4</td>
<td>5.3</td>
<td>190</td>
</tr>
<tr>
<td>DG 3544 B2XF</td>
<td>1733</td>
<td>38.1</td>
<td>4.5</td>
<td>1.27</td>
<td>35.5</td>
<td>85.8</td>
<td>4.6</td>
<td>164</td>
</tr>
<tr>
<td>TAM Gladdis</td>
<td>1731</td>
<td>37.6</td>
<td>4.4</td>
<td>1.17</td>
<td>34.8</td>
<td>84.6</td>
<td>6.2</td>
<td>216</td>
</tr>
<tr>
<td>SSG UA 222</td>
<td>1730</td>
<td>39.5</td>
<td>4.6</td>
<td>1.23</td>
<td>33.5</td>
<td>85.6</td>
<td>6.7</td>
<td>224</td>
</tr>
<tr>
<td>TAM 13 Q-18</td>
<td>1716</td>
<td>39.6</td>
<td>4.3</td>
<td>1.33</td>
<td>34.1</td>
<td>86.3</td>
<td>6.5</td>
<td>222</td>
</tr>
<tr>
<td>PHY 444 WRF</td>
<td>1715</td>
<td>39.9</td>
<td>4.0</td>
<td>1.24</td>
<td>35.1</td>
<td>83.9</td>
<td>4.5</td>
<td>156</td>
</tr>
<tr>
<td>AMX 1601 B2XF</td>
<td>1708</td>
<td>43.3</td>
<td>4.8</td>
<td>1.21</td>
<td>34.0</td>
<td>84.6</td>
<td>5.6</td>
<td>190</td>
</tr>
<tr>
<td>DPL 1219 B2RF</td>
<td>1702</td>
<td>41.5</td>
<td>4.6</td>
<td>1.20</td>
<td>36.0</td>
<td>84.6</td>
<td>4.6</td>
<td>166</td>
</tr>
<tr>
<td>DP 1522 B2XF</td>
<td>1687</td>
<td>37.4</td>
<td>4.8</td>
<td>1.20</td>
<td>33.6</td>
<td>84.5</td>
<td>7.6</td>
<td>255</td>
</tr>
<tr>
<td>PHY 243 WRF</td>
<td>1672</td>
<td>39.3</td>
<td>3.7</td>
<td>1.30</td>
<td>29.1</td>
<td>83.6</td>
<td>5.8</td>
<td>167</td>
</tr>
<tr>
<td>PHY 222 WRF</td>
<td>1645</td>
<td>39.6</td>
<td>4.9</td>
<td>1.21</td>
<td>33.8</td>
<td>86.2</td>
<td>6.5</td>
<td>220</td>
</tr>
<tr>
<td>FM 2484 B2F</td>
<td>1583</td>
<td>40.0</td>
<td>4.2</td>
<td>1.27</td>
<td>33.8</td>
<td>85.1</td>
<td>5.7</td>
<td>191</td>
</tr>
<tr>
<td>TAM 13 Q-51</td>
<td>1568</td>
<td>37.1</td>
<td>4.5</td>
<td>1.27</td>
<td>36.1</td>
<td>85.7</td>
<td>6.6</td>
<td>238</td>
</tr>
<tr>
<td>Variety</td>
<td>N</td>
<td>1000-kernel</td>
<td>100-kernel</td>
<td>50-kernel</td>
<td>10-kernel</td>
<td>100-kernel</td>
<td>10-kernel</td>
<td>10-kernel</td>
</tr>
<tr>
<td>-------------------</td>
<td>----</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>TAM 10 WD-08</td>
<td>1565</td>
<td>37.8</td>
<td>4.1</td>
<td>1.22</td>
<td>34.5</td>
<td>84.9</td>
<td>5.9</td>
<td>206</td>
</tr>
<tr>
<td>BRS-286</td>
<td>1502</td>
<td>37.6</td>
<td>4.3</td>
<td>1.21</td>
<td>33.7</td>
<td>83.0</td>
<td>5.8</td>
<td>195</td>
</tr>
<tr>
<td>SSG UA 103</td>
<td>1502</td>
<td>38.2</td>
<td>4.6</td>
<td>1.30</td>
<td>34.5</td>
<td>86.5</td>
<td>6.0</td>
<td>204</td>
</tr>
<tr>
<td>CA-27</td>
<td>1457</td>
<td>33.3</td>
<td>4.6</td>
<td>1.23</td>
<td>35.4</td>
<td>84.6</td>
<td>5.3</td>
<td>186</td>
</tr>
<tr>
<td>TAM 10 WE-61</td>
<td>1440</td>
<td>36.4</td>
<td>4.7</td>
<td>1.31</td>
<td>36.6</td>
<td>84.9</td>
<td>4.3</td>
<td>157</td>
</tr>
<tr>
<td>PHY 725 RF</td>
<td>1397</td>
<td>37.4</td>
<td>4.6</td>
<td>1.28</td>
<td>38.4</td>
<td>85.3</td>
<td>6.2</td>
<td>237</td>
</tr>
<tr>
<td>BRS-293</td>
<td>1372</td>
<td>39.3</td>
<td>5.0</td>
<td>1.14</td>
<td>33.4</td>
<td>82.8</td>
<td>5.4</td>
<td>176</td>
</tr>
<tr>
<td>TAM 12 BB 2139</td>
<td>1342</td>
<td>35.0</td>
<td>3.9</td>
<td>1.50</td>
<td>35.0</td>
<td>86.2</td>
<td>5.6</td>
<td>194</td>
</tr>
<tr>
<td>BRS-335</td>
<td>1340</td>
<td>37.7</td>
<td>4.0</td>
<td>1.24</td>
<td>31.6</td>
<td>84.3</td>
<td>5.9</td>
<td>185</td>
</tr>
<tr>
<td>LSD (k=100)(^1)</td>
<td>171</td>
<td>2.6</td>
<td>0.6</td>
<td>0.08</td>
<td>3.7</td>
<td>2.7</td>
<td>2.5</td>
<td>75</td>
</tr>
<tr>
<td>%CV</td>
<td>7.3</td>
<td>3.4</td>
<td>6.2</td>
<td>3.2</td>
<td>4.7</td>
<td>1.1</td>
<td>14.9</td>
<td>14.0</td>
</tr>
<tr>
<td>Mean</td>
<td>1733</td>
<td>39.8</td>
<td>4.5</td>
<td>1.23</td>
<td>33.9</td>
<td>84.8</td>
<td>6.0</td>
<td>203</td>
</tr>
</tbody>
</table>

1. Values within columns are different at p=0.05 (k=100) if they differ by more than the LSD value.
Table 3. Agronomic performance and fiber quality of cotton cultivars evaluated at Corpus Christi, 2016 (dryland).

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Lint Yield (lb/ac)</th>
<th>Gin Turnout (%)</th>
<th>Micronaire (units)</th>
<th>Length (in)</th>
<th>Strength (g/tex)</th>
<th>UI (ratio)</th>
<th>Elongation (%)</th>
<th>Work Break</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 312 WRF</td>
<td>1444</td>
<td>42.1</td>
<td>4.5</td>
<td>1.14</td>
<td>32.1</td>
<td>83.7</td>
<td>6.0</td>
<td>192</td>
</tr>
<tr>
<td>PHY 496 W3RF</td>
<td>1440</td>
<td>42.7</td>
<td>4.5</td>
<td>1.10</td>
<td>33.0</td>
<td>83.7</td>
<td>6.6</td>
<td>216</td>
</tr>
<tr>
<td>PHY 495 W3RF</td>
<td>1366</td>
<td>44.1</td>
<td>4.8</td>
<td>1.08</td>
<td>33.8</td>
<td>84.4</td>
<td>7.1</td>
<td>238</td>
</tr>
<tr>
<td>ST 4946 GLB2</td>
<td>1356</td>
<td>40.1</td>
<td>4.7</td>
<td>1.09</td>
<td>31.5</td>
<td>83.3</td>
<td>6.2</td>
<td>195</td>
</tr>
<tr>
<td>DP 1646 B2XF</td>
<td>1313</td>
<td>44.0</td>
<td>4.7</td>
<td>1.17</td>
<td>31.4</td>
<td>82.7</td>
<td>6.7</td>
<td>210</td>
</tr>
<tr>
<td>PHY 243 WRF</td>
<td>1271</td>
<td>40.0</td>
<td>4.1</td>
<td>1.19</td>
<td>29.3</td>
<td>82.0</td>
<td>5.8</td>
<td>170</td>
</tr>
<tr>
<td>PHY 444 WRF</td>
<td>1260</td>
<td>42.5</td>
<td>4.0</td>
<td>1.22</td>
<td>33.8</td>
<td>85.5</td>
<td>5.9</td>
<td>199</td>
</tr>
<tr>
<td>PHY 499 WRF</td>
<td>1241</td>
<td>42.2</td>
<td>4.7</td>
<td>1.10</td>
<td>33.6</td>
<td>84.3</td>
<td>6.1</td>
<td>205</td>
</tr>
<tr>
<td>NG 3406 B2XF</td>
<td>1208</td>
<td>41.3</td>
<td>4.6</td>
<td>1.11</td>
<td>29.5</td>
<td>84.1</td>
<td>6.5</td>
<td>192</td>
</tr>
<tr>
<td>SSG UA 222</td>
<td>1185</td>
<td>39.4</td>
<td>4.7</td>
<td>1.17</td>
<td>33.2</td>
<td>84.1</td>
<td>5.9</td>
<td>194</td>
</tr>
<tr>
<td>NG 5007 B2XF</td>
<td>1185</td>
<td>42.7</td>
<td>4.4</td>
<td>1.12</td>
<td>28.1</td>
<td>81.7</td>
<td>7.1</td>
<td>199</td>
</tr>
<tr>
<td>PX16400</td>
<td>1179</td>
<td>43.1</td>
<td>4.8</td>
<td>1.11</td>
<td>35.4</td>
<td>85.2</td>
<td>6.8</td>
<td>239</td>
</tr>
<tr>
<td>DP 0912 B2RF</td>
<td>1151</td>
<td>39.1</td>
<td>5.1</td>
<td>1.04</td>
<td>29.4</td>
<td>82.8</td>
<td>5.8</td>
<td>169</td>
</tr>
<tr>
<td>PHY 333 WRF</td>
<td>1150</td>
<td>40.5</td>
<td>4.4</td>
<td>1.16</td>
<td>32.5</td>
<td>84.4</td>
<td>4.8</td>
<td>156</td>
</tr>
<tr>
<td>Croplan 3787 B2RF</td>
<td>1113</td>
<td>43.1</td>
<td>4.7</td>
<td>1.09</td>
<td>30.5</td>
<td>83.3</td>
<td>7.1</td>
<td>216</td>
</tr>
<tr>
<td>PHY 222 WRF</td>
<td>1112</td>
<td>39.5</td>
<td>4.4</td>
<td>1.12</td>
<td>32.3</td>
<td>85.0</td>
<td>6.4</td>
<td>205</td>
</tr>
<tr>
<td>All-Tex Nitro 44</td>
<td>1080</td>
<td>38.8</td>
<td>4.0</td>
<td>1.16</td>
<td>34.8</td>
<td>83.7</td>
<td>6.7</td>
<td>233</td>
</tr>
<tr>
<td>TAM 13 Q-51</td>
<td>1068</td>
<td>37.2</td>
<td>4.7</td>
<td>1.18</td>
<td>36.5</td>
<td>85.7</td>
<td>6.9</td>
<td>250</td>
</tr>
<tr>
<td>TAM Gladdis</td>
<td>1051</td>
<td>38.6</td>
<td>5.0</td>
<td>1.09</td>
<td>32.9</td>
<td>84.6</td>
<td>5.5</td>
<td>181</td>
</tr>
<tr>
<td>DG 3544 B2XF</td>
<td>1045</td>
<td>39.0</td>
<td>5.0</td>
<td>1.17</td>
<td>34.3</td>
<td>84.4</td>
<td>4.7</td>
<td>160</td>
</tr>
<tr>
<td>SS UA 103</td>
<td>1030</td>
<td>37.6</td>
<td>4.4</td>
<td>1.19</td>
<td>33.0</td>
<td>84.8</td>
<td>6.4</td>
<td>210</td>
</tr>
<tr>
<td>DG 3526 B2XF</td>
<td>1015</td>
<td>44.2</td>
<td>4.9</td>
<td>1.09</td>
<td>31.2</td>
<td>84.1</td>
<td>7.6</td>
<td>237</td>
</tr>
<tr>
<td>DP 1522 B2XF</td>
<td>1014</td>
<td>43.0</td>
<td>5.1</td>
<td>1.09</td>
<td>32.0</td>
<td>83.6</td>
<td>7.4</td>
<td>236</td>
</tr>
<tr>
<td>DPL 1219 B2RF</td>
<td>1002</td>
<td>40.3</td>
<td>4.5</td>
<td>1.10</td>
<td>31.4</td>
<td>82.4</td>
<td>5.1</td>
<td>159</td>
</tr>
<tr>
<td>NG 1511 B2RF</td>
<td>993</td>
<td>40.9</td>
<td>4.7</td>
<td>1.09</td>
<td>33.1</td>
<td>84.4</td>
<td>6.7</td>
<td>221</td>
</tr>
<tr>
<td>DP 1044 B2RF</td>
<td>991</td>
<td>38.5</td>
<td>4.5</td>
<td>1.06</td>
<td>30.1</td>
<td>82.4</td>
<td>7.2</td>
<td>215</td>
</tr>
<tr>
<td>BRS-286</td>
<td>983</td>
<td>38.1</td>
<td>4.7</td>
<td>1.06</td>
<td>30.3</td>
<td>82.4</td>
<td>4.5</td>
<td>135</td>
</tr>
<tr>
<td>TAM 13 Q-18</td>
<td>981</td>
<td>39.5</td>
<td>4.6</td>
<td>1.17</td>
<td>33.9</td>
<td>83.6</td>
<td>7.1</td>
<td>238</td>
</tr>
<tr>
<td>Tamcot G11</td>
<td>971</td>
<td>36.6</td>
<td>4.2</td>
<td>1.26</td>
<td>32.3</td>
<td>84.0</td>
<td>4.6</td>
<td>149</td>
</tr>
<tr>
<td>TAM 10 WD-08</td>
<td>959</td>
<td>37.6</td>
<td>4.3</td>
<td>1.20</td>
<td>36.6</td>
<td>84.1</td>
<td>5.7</td>
<td>208</td>
</tr>
<tr>
<td>TAM 13 S-03</td>
<td>955</td>
<td>38.9</td>
<td>4.7</td>
<td>1.12</td>
<td>32.5</td>
<td>84.3</td>
<td>6.2</td>
<td>199</td>
</tr>
<tr>
<td>FM 2484 B2F</td>
<td>930</td>
<td>40.3</td>
<td>4.2</td>
<td>1.15</td>
<td>31.4</td>
<td>82.7</td>
<td>4.4</td>
<td>136</td>
</tr>
<tr>
<td>Variety</td>
<td>Code</td>
<td>LSD (k=100)</td>
<td>%CV</td>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>-------------</td>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 1549 B2XF</td>
<td>921</td>
<td>150</td>
<td>10.4</td>
<td>1080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRS-293</td>
<td>915</td>
<td>150</td>
<td>10.4</td>
<td>1080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMX 1601 B2XF</td>
<td>903</td>
<td>150</td>
<td>10.4</td>
<td>1080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAM 10 WE-61</td>
<td>884</td>
<td>150</td>
<td>10.4</td>
<td>1080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 725 RF</td>
<td>876</td>
<td>150</td>
<td>10.4</td>
<td>1080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAM 12 BB 2139</td>
<td>837</td>
<td>150</td>
<td>10.4</td>
<td>1080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRS-335</td>
<td>713</td>
<td>150</td>
<td>10.4</td>
<td>1080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Values within columns are different at p=0.05 (k=100) if they differ by more than the LSD value.
Table 4. Agronomic performance and fiber quality of cotton cultivars evaluated at College Station, 2016 (irrigated).

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Lint Yield (lb/ac)</th>
<th>Gin Turnout (%)</th>
<th>Microaire (units)</th>
<th>Length (in)</th>
<th>Strength (g/tex)</th>
<th>Ul (ratio)</th>
<th>Elongation (%)</th>
<th>Work to Break</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP 1646 B2XF</td>
<td>1726</td>
<td>43.3</td>
<td>4.7</td>
<td>1.33</td>
<td>31.9</td>
<td>86.6</td>
<td>8.6</td>
<td>275</td>
</tr>
<tr>
<td>PHY 444 WRF</td>
<td>1636</td>
<td>42.7</td>
<td>4.1</td>
<td>1.34</td>
<td>32.3</td>
<td>87.9</td>
<td>6.8</td>
<td>219</td>
</tr>
<tr>
<td>PHY 312 WRF</td>
<td>1615</td>
<td>42.2</td>
<td>5.0</td>
<td>1.23</td>
<td>32.7</td>
<td>86.6</td>
<td>7.3</td>
<td>237</td>
</tr>
<tr>
<td>PHY 496 W3RF</td>
<td>1589</td>
<td>45.4</td>
<td>4.9</td>
<td>1.16</td>
<td>32.9</td>
<td>85.5</td>
<td>8.1</td>
<td>267</td>
</tr>
<tr>
<td>PHY 499 WRF</td>
<td>1570</td>
<td>44.3</td>
<td>5.0</td>
<td>1.19</td>
<td>35.0</td>
<td>86.7</td>
<td>8.5</td>
<td>295</td>
</tr>
<tr>
<td>PHY 333 WRF</td>
<td>1541</td>
<td>42.6</td>
<td>4.6</td>
<td>1.26</td>
<td>31.4</td>
<td>86.4</td>
<td>7.8</td>
<td>242</td>
</tr>
<tr>
<td>DP 1522 B2XF</td>
<td>1531</td>
<td>42.1</td>
<td>5.2</td>
<td>1.22</td>
<td>32.5</td>
<td>86.6</td>
<td>8.1</td>
<td>261</td>
</tr>
<tr>
<td>Croplan 3885 B2XF</td>
<td>1527</td>
<td>42.9</td>
<td>4.7</td>
<td>1.21</td>
<td>30.0</td>
<td>86.3</td>
<td>7.7</td>
<td>229</td>
</tr>
<tr>
<td>DPL 1219 B2RF</td>
<td>1514</td>
<td>41.1</td>
<td>4.5</td>
<td>1.25</td>
<td>35.1</td>
<td>85.5</td>
<td>6.3</td>
<td>219</td>
</tr>
<tr>
<td>ST 4946GLB2</td>
<td>1507</td>
<td>40.8</td>
<td>5.2</td>
<td>1.20</td>
<td>34.8</td>
<td>87.1</td>
<td>7.5</td>
<td>259</td>
</tr>
<tr>
<td>TAM 13 S-03</td>
<td>1473</td>
<td>38.6</td>
<td>4.8</td>
<td>1.23</td>
<td>31.9</td>
<td>86.6</td>
<td>7.9</td>
<td>252</td>
</tr>
<tr>
<td>DP 1044 B2RF</td>
<td>1458</td>
<td>40.5</td>
<td>4.9</td>
<td>1.17</td>
<td>30.6</td>
<td>84.7</td>
<td>9.8</td>
<td>299</td>
</tr>
<tr>
<td>PHY 495 W3RF</td>
<td>1456</td>
<td>44.0</td>
<td>5.0</td>
<td>1.17</td>
<td>32.1</td>
<td>88.1</td>
<td>8.8</td>
<td>282</td>
</tr>
<tr>
<td>DP 1614 B2XF</td>
<td>1454</td>
<td>43.7</td>
<td>5.3</td>
<td>1.28</td>
<td>32.3</td>
<td>87.8</td>
<td>7.8</td>
<td>252</td>
</tr>
<tr>
<td>DP 1555 B2RF</td>
<td>1432</td>
<td>45.1</td>
<td>4.7</td>
<td>1.24</td>
<td>32.2</td>
<td>86.5</td>
<td>7.3</td>
<td>234</td>
</tr>
<tr>
<td>Tamcot G11</td>
<td>1424</td>
<td>38.4</td>
<td>4.4</td>
<td>1.39</td>
<td>32.6</td>
<td>86.7</td>
<td>7.7</td>
<td>248</td>
</tr>
<tr>
<td>DP 0912 B2RF</td>
<td>1419</td>
<td>40.4</td>
<td>5.0</td>
<td>1.20</td>
<td>32.1</td>
<td>85.8</td>
<td>7.5</td>
<td>239</td>
</tr>
<tr>
<td>DP 1518 B2XF</td>
<td>1418</td>
<td>40.4</td>
<td>4.3</td>
<td>1.25</td>
<td>31.8</td>
<td>86.4</td>
<td>6.6</td>
<td>210</td>
</tr>
<tr>
<td>AMX 1601 B2XF</td>
<td>1400</td>
<td>43.7</td>
<td>5.2</td>
<td>1.24</td>
<td>34.2</td>
<td>86.4</td>
<td>7.2</td>
<td>246</td>
</tr>
<tr>
<td>PX164000</td>
<td>1400</td>
<td>42.0</td>
<td>4.8</td>
<td>1.20</td>
<td>35.3</td>
<td>86.4</td>
<td>8.6</td>
<td>302</td>
</tr>
<tr>
<td>BRS-286</td>
<td>1391</td>
<td>38.2</td>
<td>4.8</td>
<td>1.21</td>
<td>32.4</td>
<td>83.9</td>
<td>6.3</td>
<td>204</td>
</tr>
<tr>
<td>TAM 10 WD-08</td>
<td>1388</td>
<td>37.6</td>
<td>4.5</td>
<td>1.33</td>
<td>33.6</td>
<td>86.7</td>
<td>8.1</td>
<td>270</td>
</tr>
<tr>
<td>NG 1511 B2RF</td>
<td>1383</td>
<td>41.8</td>
<td>4.9</td>
<td>1.22</td>
<td>33.6</td>
<td>86.2</td>
<td>8.5</td>
<td>284</td>
</tr>
<tr>
<td>NG 5007 B2XF</td>
<td>1380</td>
<td>42.9</td>
<td>4.6</td>
<td>1.22</td>
<td>30.3</td>
<td>84.9</td>
<td>7.7</td>
<td>233</td>
</tr>
<tr>
<td>NG 3406 B2XF</td>
<td>1366</td>
<td>40.8</td>
<td>4.9</td>
<td>1.19</td>
<td>30.0</td>
<td>85.2</td>
<td>8.0</td>
<td>238</td>
</tr>
<tr>
<td>BRS-335</td>
<td>1366</td>
<td>38.9</td>
<td>4.4</td>
<td>1.26</td>
<td>30.8</td>
<td>85.9</td>
<td>6.4</td>
<td>195</td>
</tr>
<tr>
<td>PHY 222 WRF</td>
<td>1338</td>
<td>39.6</td>
<td>5.2</td>
<td>1.20</td>
<td>32.7</td>
<td>86.2</td>
<td>7.6</td>
<td>246</td>
</tr>
<tr>
<td>TAM 13 Q-18</td>
<td>1323</td>
<td>42.2</td>
<td>4.8</td>
<td>1.30</td>
<td>32.3</td>
<td>87.0</td>
<td>7.4</td>
<td>239</td>
</tr>
<tr>
<td>DG 3757 B2XF</td>
<td>1290</td>
<td>43.9</td>
<td>4.6</td>
<td>1.24</td>
<td>30.9</td>
<td>86.3</td>
<td>7.8</td>
<td>240</td>
</tr>
<tr>
<td>PHY 243 WRF</td>
<td>1289</td>
<td>39.5</td>
<td>4.4</td>
<td>1.27</td>
<td>30.5</td>
<td>84.9</td>
<td>7.4</td>
<td>224</td>
</tr>
<tr>
<td>FM 2484 B2F</td>
<td>1276</td>
<td>39.6</td>
<td>4.4</td>
<td>1.31</td>
<td>33.4</td>
<td>87.3</td>
<td>5.5</td>
<td>184</td>
</tr>
<tr>
<td>TAM 13 Q-51</td>
<td>1268</td>
<td>35.8</td>
<td>4.9</td>
<td>1.35</td>
<td>35.1</td>
<td>88.9</td>
<td>7.6</td>
<td>266</td>
</tr>
<tr>
<td>Variety</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
<td>Value 8</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>All-Tex Nitro 44</td>
<td>1263</td>
<td>37.6</td>
<td>4.1</td>
<td>1.31</td>
<td>34.1</td>
<td>85.7</td>
<td>7.7</td>
<td>261</td>
</tr>
<tr>
<td>TAM Gladdis</td>
<td>1249</td>
<td>39.6</td>
<td>5.0</td>
<td>1.24</td>
<td>31.9</td>
<td>86.9</td>
<td>7.3</td>
<td>231</td>
</tr>
<tr>
<td>DP 1553 B2XF</td>
<td>1231</td>
<td>42.8</td>
<td>4.3</td>
<td>1.26</td>
<td>31.2</td>
<td>86.8</td>
<td>7.7</td>
<td>238</td>
</tr>
<tr>
<td>Croplan 3475 B2XF</td>
<td>1210</td>
<td>38.9</td>
<td>4.9</td>
<td>1.23</td>
<td>32.7</td>
<td>86.2</td>
<td>9.4</td>
<td>305</td>
</tr>
<tr>
<td>DG 3526 B2XF</td>
<td>1139</td>
<td>43.1</td>
<td>4.2</td>
<td>1.21</td>
<td>31.0</td>
<td>85.9</td>
<td>8.3</td>
<td>256</td>
</tr>
<tr>
<td>BRS-293</td>
<td>1128</td>
<td>39.6</td>
<td>5.1</td>
<td>1.26</td>
<td>36.2</td>
<td>87.3</td>
<td>7.4</td>
<td>268</td>
</tr>
<tr>
<td>Croplan 3787 B2RF</td>
<td>1108</td>
<td>42.9</td>
<td>4.5</td>
<td>1.25</td>
<td>31.3</td>
<td>86.6</td>
<td>8.0</td>
<td>249</td>
</tr>
<tr>
<td>TAM 12 BB 2139</td>
<td>1090</td>
<td>37.7</td>
<td>4.5</td>
<td>1.41</td>
<td>35.5</td>
<td>87.4</td>
<td>5.3</td>
<td>188</td>
</tr>
<tr>
<td>BRS-269</td>
<td>1021</td>
<td>38.4</td>
<td>4.9</td>
<td>1.26</td>
<td>34.0</td>
<td>85.5</td>
<td>6.4</td>
<td>216</td>
</tr>
<tr>
<td>PHY 725 RF</td>
<td>1017</td>
<td>37.8</td>
<td>4.6</td>
<td>1.29</td>
<td>35.5</td>
<td>86.2</td>
<td>6.9</td>
<td>243</td>
</tr>
<tr>
<td>TAM 10 WE-61</td>
<td>985</td>
<td>35.6</td>
<td>4.6</td>
<td>1.38</td>
<td>36.9</td>
<td>86.8</td>
<td>7.2</td>
<td>263</td>
</tr>
<tr>
<td>LSD (k=100)^1</td>
<td>233</td>
<td>1.9</td>
<td>0.5</td>
<td>0.05</td>
<td>2.8</td>
<td>ns</td>
<td>1.7</td>
<td>59.4</td>
</tr>
<tr>
<td>%CV</td>
<td>11.5</td>
<td>2.5</td>
<td>4.9</td>
<td>2.1</td>
<td>4</td>
<td>1.3</td>
<td>10.0</td>
<td>10.2</td>
</tr>
<tr>
<td>Mean</td>
<td>1368</td>
<td>40.9</td>
<td>4.7</td>
<td>1.25</td>
<td>32.8</td>
<td>86.4</td>
<td>7.5</td>
<td>247</td>
</tr>
</tbody>
</table>

1. Values within columns are different at p=0.05 (k=100) if they differ by more than the LSD value.
Table 5. Agronomic performance and fiber quality of cotton cultivars evaluated at College Station, 2016, (dryland).

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Lint Yield (lb/ac)</th>
<th>Gin Turnout (%)</th>
<th>Micronaire (units)</th>
<th>Length (in)</th>
<th>Strength (g/tex)</th>
<th>Ul (ratio)</th>
<th>Elongation (%)</th>
<th>Work to Break</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 312 WRF</td>
<td>1171</td>
<td>40.6</td>
<td>4.4</td>
<td>1.15</td>
<td>27.9</td>
<td>85.4</td>
<td>7.6</td>
<td>211</td>
</tr>
<tr>
<td>PHY 495 W3RF</td>
<td>1170</td>
<td>44.1</td>
<td>4.3</td>
<td>1.09</td>
<td>33.0</td>
<td>84.7</td>
<td>7.3</td>
<td>239</td>
</tr>
<tr>
<td>ST 4946 GLB2</td>
<td>1131</td>
<td>38.7</td>
<td>4.4</td>
<td>1.16</td>
<td>33.0</td>
<td>85.2</td>
<td>7.6</td>
<td>250</td>
</tr>
<tr>
<td>PHY 333 WRF</td>
<td>1105</td>
<td>41.1</td>
<td>4.1</td>
<td>1.18</td>
<td>29.6</td>
<td>85.4</td>
<td>5.9</td>
<td>173</td>
</tr>
<tr>
<td>AMX1601 B2XF</td>
<td>1096</td>
<td>41.8</td>
<td>4.2</td>
<td>1.14</td>
<td>30.7</td>
<td>84.2</td>
<td>6.6</td>
<td>203</td>
</tr>
<tr>
<td>BRS-286</td>
<td>1080</td>
<td>39.3</td>
<td>4.8</td>
<td>1.10</td>
<td>32.0</td>
<td>83.9</td>
<td>5.7</td>
<td>182</td>
</tr>
<tr>
<td>DP 1646 B2XF</td>
<td>1073</td>
<td>42.7</td>
<td>4.1</td>
<td>1.21</td>
<td>31.4</td>
<td>83.5</td>
<td>8.0</td>
<td>250</td>
</tr>
<tr>
<td>Tamcot G11</td>
<td>1064</td>
<td>37.1</td>
<td>4.3</td>
<td>1.30</td>
<td>33.1</td>
<td>84.8</td>
<td>4.9</td>
<td>161</td>
</tr>
<tr>
<td>DP 1549 B2XF</td>
<td>1057</td>
<td>42.8</td>
<td>4.5</td>
<td>1.12</td>
<td>28.9</td>
<td>81.9</td>
<td>6.5</td>
<td>186</td>
</tr>
<tr>
<td>DP 0912 B2RF</td>
<td>1051</td>
<td>39.0</td>
<td>4.6</td>
<td>1.14</td>
<td>31.2</td>
<td>85.1</td>
<td>7.8</td>
<td>243</td>
</tr>
<tr>
<td>TAM 10 WD-08</td>
<td>1026</td>
<td>36.0</td>
<td>4.2</td>
<td>1.24</td>
<td>37.3</td>
<td>86.4</td>
<td>7.7</td>
<td>285</td>
</tr>
<tr>
<td>NG 5007 B2XF</td>
<td>998</td>
<td>42.0</td>
<td>4.4</td>
<td>1.15</td>
<td>29.0</td>
<td>83.8</td>
<td>7.8</td>
<td>225</td>
</tr>
<tr>
<td>NG 3406 B2XF</td>
<td>995</td>
<td>42.7</td>
<td>4.5</td>
<td>1.10</td>
<td>29.8</td>
<td>83.8</td>
<td>7.5</td>
<td>222</td>
</tr>
<tr>
<td>PHY 496 W3RF</td>
<td>991</td>
<td>45.3</td>
<td>4.6</td>
<td>1.10</td>
<td>31.7</td>
<td>83.9</td>
<td>8.5</td>
<td>268</td>
</tr>
<tr>
<td>PX16400</td>
<td>985</td>
<td>43.1</td>
<td>4.8</td>
<td>1.13</td>
<td>35.6</td>
<td>85.5</td>
<td>7.3</td>
<td>258</td>
</tr>
<tr>
<td>PHY 499 WRF</td>
<td>980</td>
<td>43.6</td>
<td>4.8</td>
<td>1.12</td>
<td>32.0</td>
<td>85.8</td>
<td>7.2</td>
<td>228</td>
</tr>
<tr>
<td>BRS-335</td>
<td>973</td>
<td>38.2</td>
<td>4.3</td>
<td>1.17</td>
<td>31.4</td>
<td>84.6</td>
<td>6.1</td>
<td>190</td>
</tr>
<tr>
<td>DP 1522 B2XF</td>
<td>969</td>
<td>41.4</td>
<td>4.7</td>
<td>1.17</td>
<td>32.9</td>
<td>85.5</td>
<td>8.0</td>
<td>260</td>
</tr>
<tr>
<td>TAM 10 WE-61</td>
<td>965</td>
<td>35.8</td>
<td>4.7</td>
<td>1.28</td>
<td>37.8</td>
<td>86.3</td>
<td>6.4</td>
<td>240</td>
</tr>
<tr>
<td>TAM 13 Q-18</td>
<td>952</td>
<td>41.0</td>
<td>4.6</td>
<td>1.20</td>
<td>36.1</td>
<td>86.0</td>
<td>7.0</td>
<td>252</td>
</tr>
<tr>
<td>TAM 13 Q-51</td>
<td>950</td>
<td>36.7</td>
<td>4.7</td>
<td>1.25</td>
<td>37.6</td>
<td>86.9</td>
<td>6.9</td>
<td>257</td>
</tr>
<tr>
<td>Croplan 3885 B2XF</td>
<td>908</td>
<td>43.1</td>
<td>4.4</td>
<td>1.13</td>
<td>31.8</td>
<td>84.3</td>
<td>7.9</td>
<td>250</td>
</tr>
<tr>
<td>PHY 725 RF</td>
<td>902</td>
<td>37.6</td>
<td>4.5</td>
<td>1.20</td>
<td>39.6</td>
<td>85.1</td>
<td>7.2</td>
<td>283</td>
</tr>
<tr>
<td>FM 2484 B2F</td>
<td>900</td>
<td>38.9</td>
<td>4.0</td>
<td>1.22</td>
<td>31.8</td>
<td>84.8</td>
<td>7.0</td>
<td>223</td>
</tr>
<tr>
<td>TAM 13 S-03</td>
<td>862</td>
<td>38.3</td>
<td>4.5</td>
<td>1.16</td>
<td>33.6</td>
<td>84.5</td>
<td>7.7</td>
<td>257</td>
</tr>
<tr>
<td>PHY 243 WRF</td>
<td>842</td>
<td>39.7</td>
<td>3.8</td>
<td>1.21</td>
<td>30.0</td>
<td>83.4</td>
<td>7.5</td>
<td>225</td>
</tr>
<tr>
<td>PHY 222 WRF</td>
<td>829</td>
<td>39.7</td>
<td>4.4</td>
<td>1.13</td>
<td>30.4</td>
<td>85.8</td>
<td>9.0</td>
<td>271</td>
</tr>
<tr>
<td>PHY 444 WRF</td>
<td>790</td>
<td>42.5</td>
<td>3.9</td>
<td>1.25</td>
<td>31.8</td>
<td>85.2</td>
<td>6.4</td>
<td>203</td>
</tr>
<tr>
<td>TAM Gladdis</td>
<td>759</td>
<td>37.2</td>
<td>5.0</td>
<td>1.14</td>
<td>34.4</td>
<td>84.2</td>
<td>7.3</td>
<td>251</td>
</tr>
<tr>
<td>BRS-293</td>
<td>754</td>
<td>38.7</td>
<td>5.3</td>
<td>1.14</td>
<td>33.6</td>
<td>83.6</td>
<td>6.7</td>
<td>223</td>
</tr>
<tr>
<td>TAM 12 BB 2139</td>
<td>748</td>
<td>34.7</td>
<td>3.8</td>
<td>1.42</td>
<td>35.4</td>
<td>86.4</td>
<td>4.3</td>
<td>152</td>
</tr>
<tr>
<td>BRS-269</td>
<td>550</td>
<td>36.4</td>
<td>4.9</td>
<td>1.17</td>
<td>32.8</td>
<td>84.1</td>
<td>5.5</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>1.6</td>
<td>0.4</td>
<td>0.04</td>
<td>1.9</td>
<td>1.6</td>
<td>2.5</td>
<td>77.1</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>LSD (k=100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (k=50)</td>
<td>155</td>
<td>1.4</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>%CV</td>
<td>12.5</td>
<td>2.2</td>
<td>4.7</td>
<td>1.8</td>
<td>3.1</td>
<td>0.9</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>Mean</td>
<td>955</td>
<td>40.0</td>
<td>4.4</td>
<td>1.18</td>
<td>32.7</td>
<td>85.0</td>
<td>7.0</td>
<td>228</td>
</tr>
</tbody>
</table>

1. Values within columns are different at p=0.05 (k=100) if they differ by more than the LSD value.
Table 6. Agronomic performance and fiber quality of cotton cultivars evaluated at Thrall, 2016 (dryland).

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Lint Yield (lb/ac)</th>
<th>Gin Turnout (%)</th>
<th>Micronaire (units)</th>
<th>Length (in)</th>
<th>Strength (g/tex)</th>
<th>UI Elongation (ratio)</th>
<th>Work Break (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRS-293</td>
<td>573</td>
<td>40.7</td>
<td>5.3</td>
<td>1.14</td>
<td>34.8</td>
<td>83.8</td>
<td>6.6</td>
</tr>
<tr>
<td>TAM 13 Q-18</td>
<td>546</td>
<td>39.1</td>
<td>4.1</td>
<td>1.22</td>
<td>35.0</td>
<td>85.7</td>
<td>6.2</td>
</tr>
<tr>
<td>PHY 444 WRF</td>
<td>509</td>
<td>44.3</td>
<td>3.9</td>
<td>1.26</td>
<td>32.2</td>
<td>85.2</td>
<td>6.0</td>
</tr>
<tr>
<td>BRS-335</td>
<td>499</td>
<td>40.0</td>
<td>3.8</td>
<td>1.19</td>
<td>32.6</td>
<td>83.5</td>
<td>5.7</td>
</tr>
<tr>
<td>BRS-286</td>
<td>474</td>
<td>40.3</td>
<td>4.5</td>
<td>1.11</td>
<td>29.8</td>
<td>83.0</td>
<td>5.0</td>
</tr>
<tr>
<td>BRS-269</td>
<td>462</td>
<td>37.3</td>
<td>4.0</td>
<td>1.14</td>
<td>34.1</td>
<td>83.3</td>
<td>4.4</td>
</tr>
<tr>
<td>PHY 725 RF</td>
<td>431</td>
<td>39.5</td>
<td>4.0</td>
<td>1.21</td>
<td>34.8</td>
<td>83.1</td>
<td>6.3</td>
</tr>
<tr>
<td>TAM Gladdis</td>
<td>421</td>
<td>39.4</td>
<td>4.2</td>
<td>1.17</td>
<td>31.7</td>
<td>84.0</td>
<td>5.1</td>
</tr>
<tr>
<td>PX16400</td>
<td>418</td>
<td>43.7</td>
<td>3.9</td>
<td>1.11</td>
<td>31.1</td>
<td>82.5</td>
<td>7.5</td>
</tr>
<tr>
<td>PHY 499 WRF</td>
<td>411</td>
<td>45.5</td>
<td>4.3</td>
<td>1.11</td>
<td>32.3</td>
<td>82.9</td>
<td>7.8</td>
</tr>
<tr>
<td>PHY 495 W3RF</td>
<td>407</td>
<td>42.7</td>
<td>3.6</td>
<td>1.12</td>
<td>33.2</td>
<td>84.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Croplan 3885 B2XF</td>
<td>398</td>
<td>43.4</td>
<td>4.4</td>
<td>1.16</td>
<td>31.5</td>
<td>83.7</td>
<td>6.5</td>
</tr>
<tr>
<td>TAM 13 Q-45</td>
<td>398</td>
<td>41.4</td>
<td>4.2</td>
<td>1.17</td>
<td>35.9</td>
<td>84.7</td>
<td>5.5</td>
</tr>
<tr>
<td>PHY 243 WRF</td>
<td>397</td>
<td>42.9</td>
<td>3.3</td>
<td>1.19</td>
<td>29.2</td>
<td>81.0</td>
<td>6.1</td>
</tr>
<tr>
<td>NG 5007 B2XF</td>
<td>391</td>
<td>40.7</td>
<td>4.0</td>
<td>1.16</td>
<td>30.9</td>
<td>83.0</td>
<td>6.7</td>
</tr>
<tr>
<td>TAM 13 S-20</td>
<td>386</td>
<td>40.5</td>
<td>4.1</td>
<td>1.20</td>
<td>34.0</td>
<td>85.4</td>
<td>5.6</td>
</tr>
<tr>
<td>Tamcot G11</td>
<td>377</td>
<td>38.3</td>
<td>4.0</td>
<td>1.22</td>
<td>31.9</td>
<td>84.0</td>
<td>6.1</td>
</tr>
<tr>
<td>NG 3522 B2XF</td>
<td>372</td>
<td>40.5</td>
<td>4.1</td>
<td>1.11</td>
<td>27.6</td>
<td>82.8</td>
<td>5.5</td>
</tr>
<tr>
<td>PHY 312 WRF</td>
<td>366</td>
<td>45.2</td>
<td>4.5</td>
<td>1.17</td>
<td>31.6</td>
<td>82.6</td>
<td>6.1</td>
</tr>
<tr>
<td>PHY 333 WRF</td>
<td>360</td>
<td>43.3</td>
<td>3.2</td>
<td>1.15</td>
<td>29.4</td>
<td>81.9</td>
<td>5.4</td>
</tr>
<tr>
<td>DP 1549 B2XF</td>
<td>336</td>
<td>45.3</td>
<td>4.0</td>
<td>1.22</td>
<td>31.1</td>
<td>83.0</td>
<td>5.1</td>
</tr>
<tr>
<td>TAM 10 WE-61</td>
<td>332</td>
<td>37.1</td>
<td>4.1</td>
<td>1.28</td>
<td>37.4</td>
<td>85.6</td>
<td>5.4</td>
</tr>
<tr>
<td>DP 1522 B2XF</td>
<td>312</td>
<td>44.9</td>
<td>3.7</td>
<td>1.12</td>
<td>30.7</td>
<td>83.6</td>
<td>6.8</td>
</tr>
<tr>
<td>NG 3405 B2XF</td>
<td>310</td>
<td>40.9</td>
<td>3.4</td>
<td>1.09</td>
<td>27.6</td>
<td>82.0</td>
<td>6.1</td>
</tr>
<tr>
<td>AMX 1601 B2XF</td>
<td>305</td>
<td>43.3</td>
<td>4.2</td>
<td>1.18</td>
<td>34.8</td>
<td>83.6</td>
<td>6.3</td>
</tr>
<tr>
<td>TAM 10 WD-08</td>
<td>303</td>
<td>38.8</td>
<td>4.1</td>
<td>1.25</td>
<td>37.2</td>
<td>85.4</td>
<td>5.6</td>
</tr>
<tr>
<td>TAM 12 BB 2139</td>
<td>293</td>
<td>36.8</td>
<td>3.5</td>
<td>1.44</td>
<td>33.4</td>
<td>85.4</td>
<td>4.6</td>
</tr>
<tr>
<td>ST 4946GLB2</td>
<td>266</td>
<td>43.2</td>
<td>3.9</td>
<td>1.11</td>
<td>31.4</td>
<td>82.7</td>
<td>6.5</td>
</tr>
<tr>
<td>NG 3406 B2XF</td>
<td>249</td>
<td>43.5</td>
<td>3.7</td>
<td>1.09</td>
<td>26.3</td>
<td>81.8</td>
<td>6.7</td>
</tr>
<tr>
<td>DP 1646 B2XF</td>
<td>245</td>
<td>43.4</td>
<td>3.6</td>
<td>1.17</td>
<td>29.0</td>
<td>81.2</td>
<td>5.7</td>
</tr>
<tr>
<td>DP 0912 B2RF</td>
<td>235</td>
<td>39.4</td>
<td>4.0</td>
<td>1.09</td>
<td>30.8</td>
<td>82.4</td>
<td>6.0</td>
</tr>
<tr>
<td>FM 2484 B2F</td>
<td>235</td>
<td>41.7</td>
<td>4.3</td>
<td>1.19</td>
<td>31.5</td>
<td>83.3</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>229</td>
<td>44.3</td>
<td>3.2</td>
<td>1.07</td>
<td>27.4</td>
<td>80.3</td>
<td>6.0</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>PHY 496 W3RF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 222 WRF</td>
<td>216</td>
<td>43.2</td>
<td>3.7</td>
<td>1.08</td>
<td>29.4</td>
<td>81.8</td>
<td>6.1</td>
</tr>
<tr>
<td>LSD (k=100)(^1)</td>
<td>161</td>
<td>2.7</td>
<td>ns</td>
<td>0.09</td>
<td>5.0</td>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>%CV</td>
<td>26.9</td>
<td>3.2</td>
<td>11.8</td>
<td>4.0</td>
<td>6.9</td>
<td>1.7</td>
<td>8.0</td>
</tr>
<tr>
<td>Mean</td>
<td>370</td>
<td>41.6</td>
<td>3.9</td>
<td>1.17</td>
<td>31.8</td>
<td>83.3</td>
<td>6.0</td>
</tr>
</tbody>
</table>

1. Values within columns are different at p=0.05 (k=100) if they differ by more than the LSD value.
Table 7. Agronomic performance and fiber quality of cotton cultivars evaluated at Commerce, 2016 (dryland).

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Lint Yield (lb/ac)</th>
<th>Gin Turnout (%)</th>
<th>Micro-naire (units)</th>
<th>Length (in)</th>
<th>Strength (g/tex)</th>
<th>UI (ratio)</th>
<th>Elongation (%)</th>
<th>Work to Break</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 333 WRF</td>
<td>1076</td>
<td>47.3</td>
<td>5.2</td>
<td>1.09</td>
<td>30.2</td>
<td>82.4</td>
<td>8.6</td>
<td>259</td>
</tr>
<tr>
<td>PHY 499 WRF</td>
<td>1062</td>
<td>45.0</td>
<td>5.4</td>
<td>1.11</td>
<td>32.3</td>
<td>83.8</td>
<td>9.0</td>
<td>290</td>
</tr>
<tr>
<td>PHY 444 WRF</td>
<td>1056</td>
<td>45.4</td>
<td>4.4</td>
<td>1.18</td>
<td>33.0</td>
<td>84.8</td>
<td>7.8</td>
<td>255</td>
</tr>
<tr>
<td>PHY 496 W3RF</td>
<td>1056</td>
<td>47.8</td>
<td>5.1</td>
<td>1.02</td>
<td>31.3</td>
<td>82.0</td>
<td>9.4</td>
<td>292</td>
</tr>
<tr>
<td>PHY 312 WRF</td>
<td>1050</td>
<td>44.7</td>
<td>5.1</td>
<td>1.12</td>
<td>32.6</td>
<td>84.4</td>
<td>8.3</td>
<td>269</td>
</tr>
<tr>
<td>Tamcot G11</td>
<td>1049</td>
<td>39.6</td>
<td>4.6</td>
<td>1.34</td>
<td>34.2</td>
<td>85.3</td>
<td>6.4</td>
<td>217</td>
</tr>
<tr>
<td>BRS-293</td>
<td>1037</td>
<td>38.5</td>
<td>5.2</td>
<td>1.14</td>
<td>34.7</td>
<td>84.1</td>
<td>7.4</td>
<td>255</td>
</tr>
<tr>
<td>PX16400</td>
<td>1034</td>
<td>44.5</td>
<td>5.0</td>
<td>1.11</td>
<td>33.2</td>
<td>83.8</td>
<td>9.5</td>
<td>316</td>
</tr>
<tr>
<td>BRS-335</td>
<td>1033</td>
<td>41.1</td>
<td>4.6</td>
<td>1.09</td>
<td>29.6</td>
<td>83.0</td>
<td>7.4</td>
<td>219</td>
</tr>
<tr>
<td>ST 4946 GLB2</td>
<td>1031</td>
<td>43.4</td>
<td>5.4</td>
<td>1.09</td>
<td>32.1</td>
<td>83.9</td>
<td>9.0</td>
<td>289</td>
</tr>
<tr>
<td>TAM Gladdis</td>
<td>1008</td>
<td>40.4</td>
<td>5.0</td>
<td>1.15</td>
<td>32.8</td>
<td>84.9</td>
<td>7.6</td>
<td>249</td>
</tr>
<tr>
<td>PHY 495 W3RF</td>
<td>960</td>
<td>45.1</td>
<td>4.9</td>
<td>1.07</td>
<td>33.1</td>
<td>83.7</td>
<td>8.1</td>
<td>267</td>
</tr>
<tr>
<td>Croplan 3885 B2XF</td>
<td>930</td>
<td>43.3</td>
<td>4.9</td>
<td>1.13</td>
<td>29.6</td>
<td>83.0</td>
<td>9.1</td>
<td>270</td>
</tr>
<tr>
<td>TAM 13 Q-18</td>
<td>918</td>
<td>38.2</td>
<td>4.8</td>
<td>1.14</td>
<td>33.1</td>
<td>84.2</td>
<td>8.5</td>
<td>281</td>
</tr>
<tr>
<td>TAM 13 S-03</td>
<td>899</td>
<td>41.2</td>
<td>4.8</td>
<td>1.13</td>
<td>32.4</td>
<td>82.7</td>
<td>8.5</td>
<td>274</td>
</tr>
<tr>
<td>Croplan 3475 B2XF</td>
<td>886</td>
<td>44.3</td>
<td>5.1</td>
<td>1.06</td>
<td>31.0</td>
<td>82.2</td>
<td>9.4</td>
<td>291</td>
</tr>
<tr>
<td>FM 2484 B2F</td>
<td>885</td>
<td>41.9</td>
<td>4.8</td>
<td>1.20</td>
<td>31.8</td>
<td>83.2</td>
<td>6.2</td>
<td>196</td>
</tr>
<tr>
<td>TAM 13 Q-51</td>
<td>875</td>
<td>39.6</td>
<td>5.4</td>
<td>1.21</td>
<td>35.2</td>
<td>84.0</td>
<td>8.2</td>
<td>287</td>
</tr>
<tr>
<td>DP 1522 B2XF</td>
<td>874</td>
<td>43.5</td>
<td>5.3</td>
<td>1.12</td>
<td>33.9</td>
<td>83.4</td>
<td>9.1</td>
<td>306</td>
</tr>
<tr>
<td>DP 1646 B2XF</td>
<td>866</td>
<td>44.6</td>
<td>5.1</td>
<td>1.24</td>
<td>31.0</td>
<td>83.2</td>
<td>7.9</td>
<td>243</td>
</tr>
<tr>
<td>TAM 10 WE-61</td>
<td>865</td>
<td>37.6</td>
<td>4.6</td>
<td>1.22</td>
<td>36.4</td>
<td>83.5</td>
<td>7.1</td>
<td>258</td>
</tr>
<tr>
<td>DP 1549 B2XF</td>
<td>859</td>
<td>44.3</td>
<td>4.9</td>
<td>1.09</td>
<td>31.0</td>
<td>82.5</td>
<td>7.5</td>
<td>232</td>
</tr>
<tr>
<td>BRS-286</td>
<td>856</td>
<td>40.8</td>
<td>4.9</td>
<td>1.03</td>
<td>28.6</td>
<td>79.9</td>
<td>7.7</td>
<td>217</td>
</tr>
<tr>
<td>PHY 222 WRF</td>
<td>850</td>
<td>45.4</td>
<td>5.4</td>
<td>1.08</td>
<td>30.3</td>
<td>83.6</td>
<td>9.3</td>
<td>282</td>
</tr>
<tr>
<td>DP 0912 B2RF</td>
<td>844</td>
<td>42.1</td>
<td>5.6</td>
<td>1.03</td>
<td>28.8</td>
<td>81.0</td>
<td>8.2</td>
<td>235</td>
</tr>
<tr>
<td>TAM 10 WD-08</td>
<td>826</td>
<td>39.1</td>
<td>4.6</td>
<td>1.20</td>
<td>35.0</td>
<td>84.6</td>
<td>7.5</td>
<td>261</td>
</tr>
<tr>
<td>BRS-269</td>
<td>825</td>
<td>37.0</td>
<td>4.2</td>
<td>1.22</td>
<td>34.5</td>
<td>84.6</td>
<td>6.4</td>
<td>219</td>
</tr>
<tr>
<td>PHY 243 WRF</td>
<td>797</td>
<td>44.1</td>
<td>4.5</td>
<td>1.13</td>
<td>28.2</td>
<td>81.1</td>
<td>8.0</td>
<td>224</td>
</tr>
<tr>
<td>TAM 12 BB 2139</td>
<td>796</td>
<td>37.8</td>
<td>4.2</td>
<td>1.40</td>
<td>33.5</td>
<td>86.2</td>
<td>5.7</td>
<td>191</td>
</tr>
<tr>
<td>PHY 725 RF</td>
<td>757</td>
<td>40.0</td>
<td>4.8</td>
<td>1.16</td>
<td>36.8</td>
<td>83.8</td>
<td>8.2</td>
<td>301</td>
</tr>
<tr>
<td>LSD (k=100) (^1)</td>
<td>224</td>
<td>1.6</td>
<td>0.3</td>
<td>0.07</td>
<td>2.4</td>
<td>2.6</td>
<td>1.6</td>
<td>58.0</td>
</tr>
<tr>
<td>%CV</td>
<td>14.1</td>
<td>2.0</td>
<td>3.1</td>
<td>3.0</td>
<td>3.7</td>
<td>1.3</td>
<td>9.1</td>
<td>9.9</td>
</tr>
<tr>
<td>Mean</td>
<td>929</td>
<td>42.3</td>
<td>4.9</td>
<td>1.14</td>
<td>32.3</td>
<td>83.4</td>
<td>8.0</td>
<td>258</td>
</tr>
</tbody>
</table>

\(^1\) Values within columns are different at p=0.05 (k=100) if they differ by more than the LSD value.
Table 8. Agronomic performance and fiber quality of cotton cultivars evaluated at Chillicothe, 2016 (irrigated).

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Lint Yield (lb/ac)</th>
<th>Gin Turnout (%)</th>
<th>Micro- naire (units)</th>
<th>Length (in)</th>
<th>Strength (g/tex)</th>
<th>Elongation (ratio)</th>
<th>Work to Break (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP 1646 B2XF</td>
<td>1391</td>
<td>32.2</td>
<td>4.2</td>
<td>1.33</td>
<td>31.5</td>
<td>86.6</td>
<td>8.7</td>
</tr>
<tr>
<td>NG 3405 B2XF</td>
<td>1356</td>
<td>30.0</td>
<td>4.4</td>
<td>1.17</td>
<td>28.6</td>
<td>84.0</td>
<td>6.6</td>
</tr>
<tr>
<td>NG 3406 B2XF</td>
<td>1347</td>
<td>30.9</td>
<td>4.4</td>
<td>1.19</td>
<td>31.7</td>
<td>84.4</td>
<td>8.5</td>
</tr>
<tr>
<td>TAM Gladdis</td>
<td>1328</td>
<td>29.8</td>
<td>4.6</td>
<td>1.21</td>
<td>32.7</td>
<td>84.9</td>
<td>7.0</td>
</tr>
<tr>
<td>PHY 243 WRF</td>
<td>1318</td>
<td>31.9</td>
<td>4.2</td>
<td>1.28</td>
<td>29.9</td>
<td>84.1</td>
<td>7.2</td>
</tr>
<tr>
<td>PHY 444 WRF</td>
<td>1308</td>
<td>31.8</td>
<td>3.8</td>
<td>1.30</td>
<td>31.6</td>
<td>85.2</td>
<td>6.1</td>
</tr>
<tr>
<td>BRS-286</td>
<td>1306</td>
<td>29.1</td>
<td>4.4</td>
<td>1.15</td>
<td>30.1</td>
<td>83.8</td>
<td>6.7</td>
</tr>
<tr>
<td>DP 1044 B2RF</td>
<td>1304</td>
<td>29.7</td>
<td>4.7</td>
<td>1.22</td>
<td>32.5</td>
<td>84.3</td>
<td>8.7</td>
</tr>
<tr>
<td>PHY 496 W3RF</td>
<td>1287</td>
<td>30.7</td>
<td>4.0</td>
<td>1.17</td>
<td>32.1</td>
<td>85.0</td>
<td>7.3</td>
</tr>
<tr>
<td>PHY 222 WRF</td>
<td>1277</td>
<td>30.8</td>
<td>4.8</td>
<td>1.18</td>
<td>30.2</td>
<td>83.9</td>
<td>8.3</td>
</tr>
<tr>
<td>ST 4946 GLB2</td>
<td>1272</td>
<td>30.1</td>
<td>4.5</td>
<td>1.19</td>
<td>33.2</td>
<td>84.4</td>
<td>6.9</td>
</tr>
<tr>
<td>Tamcot G11</td>
<td>1271</td>
<td>30.3</td>
<td>4.1</td>
<td>1.36</td>
<td>31.4</td>
<td>84.6</td>
<td>5.8</td>
</tr>
<tr>
<td>AMX 1601 B2XF</td>
<td>1252</td>
<td>32.8</td>
<td>4.6</td>
<td>1.23</td>
<td>34.0</td>
<td>84.6</td>
<td>6.9</td>
</tr>
<tr>
<td>NG 1511 B2RF</td>
<td>1232</td>
<td>33.3</td>
<td>4.7</td>
<td>1.20</td>
<td>32.8</td>
<td>84.1</td>
<td>8.0</td>
</tr>
<tr>
<td>DP 1612 B2XF</td>
<td>1231</td>
<td>29.8</td>
<td>4.5</td>
<td>1.21</td>
<td>32.5</td>
<td>84.9</td>
<td>8.5</td>
</tr>
<tr>
<td>DG 3544 B2XF</td>
<td>1221</td>
<td>29.1</td>
<td>4.7</td>
<td>1.24</td>
<td>34.3</td>
<td>85.6</td>
<td>5.6</td>
</tr>
<tr>
<td>NG 3522 B2XF</td>
<td>1209</td>
<td>29.6</td>
<td>4.4</td>
<td>1.17</td>
<td>28.7</td>
<td>84.4</td>
<td>6.2</td>
</tr>
<tr>
<td>All-Tex Nitro 44</td>
<td>1205</td>
<td>30.0</td>
<td>4.0</td>
<td>1.29</td>
<td>34.5</td>
<td>86.0</td>
<td>7.7</td>
</tr>
<tr>
<td>Croplan 3475B2XF</td>
<td>1198</td>
<td>29.5</td>
<td>4.4</td>
<td>1.18</td>
<td>31.5</td>
<td>82.8</td>
<td>8.0</td>
</tr>
<tr>
<td>BRS-335</td>
<td>1184</td>
<td>29.4</td>
<td>4.4</td>
<td>1.24</td>
<td>31.8</td>
<td>84.7</td>
<td>6.2</td>
</tr>
<tr>
<td>FM 2011 GT</td>
<td>1172</td>
<td>30.4</td>
<td>4.4</td>
<td>1.21</td>
<td>32.6</td>
<td>84.6</td>
<td>5.9</td>
</tr>
<tr>
<td>Croplan 3885 B2XF</td>
<td>1152</td>
<td>30.1</td>
<td>4.3</td>
<td>1.21</td>
<td>29.5</td>
<td>85.0</td>
<td>7.9</td>
</tr>
<tr>
<td>DP 0912 B2RF</td>
<td>1133</td>
<td>28.2</td>
<td>4.9</td>
<td>1.15</td>
<td>29.9</td>
<td>84.3</td>
<td>7.5</td>
</tr>
<tr>
<td>TAM 12 BB 2139</td>
<td>1107</td>
<td>27.1</td>
<td>3.8</td>
<td>1.40</td>
<td>30.7</td>
<td>85.5</td>
<td>5.3</td>
</tr>
<tr>
<td>DP 1522 B2XF</td>
<td>1105</td>
<td>28.6</td>
<td>4.4</td>
<td>1.20</td>
<td>31.8</td>
<td>84.3</td>
<td>8.0</td>
</tr>
<tr>
<td>FM 2484 B2F</td>
<td>1103</td>
<td>30.4</td>
<td>3.8</td>
<td>1.25</td>
<td>32.6</td>
<td>85.8</td>
<td>6.0</td>
</tr>
<tr>
<td>BRS-269</td>
<td>1084</td>
<td>27.6</td>
<td>4.4</td>
<td>1.21</td>
<td>33.8</td>
<td>83.5</td>
<td>4.9</td>
</tr>
<tr>
<td>TAM 13 S-03</td>
<td>1060</td>
<td>28.9</td>
<td>4.0</td>
<td>1.21</td>
<td>31.4</td>
<td>84.0</td>
<td>8.0</td>
</tr>
<tr>
<td>PHY 495 W3RF</td>
<td>1035</td>
<td>29.7</td>
<td>4.3</td>
<td>1.15</td>
<td>32.7</td>
<td>85.8</td>
<td>7.8</td>
</tr>
<tr>
<td>TAM 13 Q-18</td>
<td>986</td>
<td>28.0</td>
<td>4.1</td>
<td>1.21</td>
<td>32.4</td>
<td>84.6</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>TAM 10 WE-61</td>
<td>981</td>
<td>25.5</td>
<td>4.5</td>
<td>1.32</td>
<td>32.8</td>
<td>87.3</td>
<td>6.7</td>
</tr>
<tr>
<td>TAM 13 Q-51</td>
<td>979</td>
<td>26.5</td>
<td>4.4</td>
<td>1.29</td>
<td>33.9</td>
<td>85.4</td>
<td>7.2</td>
</tr>
<tr>
<td>NG 5007 B2XF</td>
<td>971</td>
<td>27.5</td>
<td>4.2</td>
<td>1.22</td>
<td>30.5</td>
<td>85.3</td>
<td>7.4</td>
</tr>
<tr>
<td>PHY 499 WRF</td>
<td>955</td>
<td>27.8</td>
<td>4.1</td>
<td>1.20</td>
<td>32.8</td>
<td>86.4</td>
<td>7.9</td>
</tr>
<tr>
<td>TAM 10 WD-08</td>
<td>939</td>
<td>26.3</td>
<td>4.0</td>
<td>1.27</td>
<td>35.7</td>
<td>85.0</td>
<td>7.6</td>
</tr>
<tr>
<td>DP 1549 B2XF</td>
<td>911</td>
<td>28.3</td>
<td>4.0</td>
<td>1.21</td>
<td>33.4</td>
<td>84.0</td>
<td>6.1</td>
</tr>
<tr>
<td>BRS-293</td>
<td>878</td>
<td>26.8</td>
<td>4.3</td>
<td>1.20</td>
<td>34.4</td>
<td>85.6</td>
<td>7.1</td>
</tr>
<tr>
<td>PHY 725 RF</td>
<td>628</td>
<td>24.1</td>
<td>4.2</td>
<td>1.27</td>
<td>35.4</td>
<td>85.0</td>
<td>7.7</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LSD (k=100)</td>
<td>181</td>
<td>3.8</td>
<td>0.4</td>
<td>0.05</td>
<td>2.2</td>
<td>ns</td>
<td>0.9</td>
</tr>
<tr>
<td>%CV</td>
<td>11.3</td>
<td>5.6</td>
<td>4.5</td>
<td>2.2</td>
<td>3.4</td>
<td>1.4</td>
<td>6.6</td>
</tr>
<tr>
<td>Mean</td>
<td>1163</td>
<td>29.4</td>
<td>4.3</td>
<td>1.23</td>
<td>32.2</td>
<td>84.9</td>
<td>7.1</td>
</tr>
</tbody>
</table>

1. Values within columns are different at p=0.05 (k=100) if they differ by more than the LSD value.